ProtoMap: automatic classification of protein sequences, a hierarchy of protein families, and local maps of the protein space.

نویسندگان

  • G Yona
  • N Linial
  • M Linial
چکیده

We investigate the space of all protein sequences in search of clusters of related proteins. Our aim is to automatically detect these sets, and thus obtain a classification of all protein sequences. Our analysis, which uses standard measures of sequence similarity as applied to an all-vs.-all comparison of SWISSPROT, gives a very conservative initial classification based on the highest scoring pairs. The many classes in this classification correspond to protein subfamilies. Subsequently we merge the subclasses using the weaker pairs in a two-phase clustering algorithm. The algorithm makes use of transitivity to identify homologous proteins; however, transitivity is applied restrictively in an attempt to prevent unrelated proteins from clustering together. This process is repeated at varying levels of statistical significance. Consequently, a hierarchical organization of all proteins is obtained. The resulting classification splits the protein space into well-defined groups of proteins, which are closely correlated with natural biological families and superfamilies. Different indices of validity were applied to assess the quality of our classification and compare it with the protein families in the PROSITE and Pfam databases. Our classification agrees with these domain-based classifications for between 64.8% and 88.5% of the proteins. It also finds many new clusters of protein sequences which were not classified by these databases. The hierarchical organization suggested by our analysis reveals finer subfamilies in families of known proteins as well as many novel relations between protein families.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ProtoMap: automatic classification of protein sequences and hierarchy of protein families

The ProtoMap site offers an exhaustive classification of all proteins in the SWISS-PROT database, into groups of related proteins. The classification is based on analysis of all pairwise similarities among protein sequences. The analysis makes essential use of transitivity to identify homologies among proteins. Within each group of the classification, every two members are either directly or tr...

متن کامل

Automatic classification of highly related Malate Dehydrogenase and L-Lactate Dehydrogenase based on 3D-pattern of active sites

Accurate protein function prediction is an important subject in bioinformatics, especially wheresequentially and structurally similar proteins have different functions. Malate dehydrogenaseand L-lactate dehydrogenase are two evolutionary related enzymes, which exist in a widevariety of organisms. These enzymes are sequentially and structurally similar and sharecommon active site residues, spati...

متن کامل

GENERATING FUZZY RULES FOR PROTEIN CLASSIFICATION

This paper considers the generation of some interpretable fuzzy rules for assigning an amino acid sequence into the appropriate protein superfamily. Since the main objective of this classifier is the interpretability of rules, we have used the distribution of amino acids in the sequences of proteins as features. These features are the occurrence probabilities of six exchange groups in the seque...

متن کامل

Predicting fold novelty based on ProtoNet hierarchical classification

MOTIVATION Structural genomics projects aim to solve a large number of protein structures with the ultimate objective of representing the entire protein space. The computational challenge is to identify and prioritize a small set of proteins with new, currently unknown, superfamilies or folds. RESULTS We develop a method that assigns each protein a likelihood of it belonging to a new, yet und...

متن کامل

A generalization of Profile Hidden Markov Model (PHMM) using one-by-one dependency between sequences

The Profile Hidden Markov Model (PHMM) can be poor at capturing dependency between observations because of the statistical assumptions it makes. To overcome this limitation, the dependency between residues in a multiple sequence alignment (MSA) which is the representative of a PHMM can be combined with the PHMM. Based on the fact that sequences appearing in the final MSA are written based on th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proteins

دوره 37 3  شماره 

صفحات  -

تاریخ انتشار 1999